1. Find the side length " X " of the square in the following case:

Solution:

Draw the diagonal and name the segments as shown:

The two right triangles obtained are similar, therefore:

$$
\begin{equation*}
\frac{a}{b}=\frac{9}{14} \tag{1}
\end{equation*}
$$

Given:

$$
\begin{equation*}
a+b=7 \tag{2}
\end{equation*}
$$

Solve this system of equation (1, 2) by substituting: $\mathrm{b}=\frac{14}{9} a$ in (2)

$$
a\left(1+\frac{14}{9}\right)=\frac{23}{9} a=7 \quad \text { so: } a=\frac{63}{23} \quad \text { and: } b=\frac{98}{23}
$$

WWW.e-tutorpro.com

In the same triangles also we know the length of diagonal is: $m+n=\sqrt{2} X$, in which m and n can be calculated using Pythagorean Theorem, separately:

$$
\begin{array}{ll}
m^{2}=14^{2}+\left(\frac{98}{23}\right)^{2}=\frac{14^{2} \cdot 23^{2}+14^{2} \cdot 7^{2}}{23^{2}}, & \text { So: } m=\frac{14}{23} \sqrt{23^{2}+7^{2}}=\frac{14}{23} \sqrt{578}=\frac{14}{23} \cdot 17 \sqrt{2} \\
n^{2}=9^{2}+\left(\frac{63}{23}\right)^{2}=\frac{9^{2} \cdot 23^{2}+9^{2} \cdot 7^{2}}{23^{2}}, \quad \text { So: } n=\frac{9}{23} \sqrt{23^{2}+7^{2}}=\frac{9}{23} \sqrt{578}=\frac{9}{23} \cdot 17 \sqrt{2}
\end{array}
$$

Therefore: $\quad m+n=\left(\frac{14}{23}+\frac{9}{23}\right) \cdot 17 \sqrt{2}=17 \sqrt{2}=\sqrt{2} X \quad$ Then: $\quad X=17 \checkmark$
2. Calculate the shaded area in the 3×3 diagram bellow.

Solution: The line AE divides the shaded area in 3 separate areas:

a. A quarter of circle with a radius of 2 units minus the triangle in its sector:

$$
\mathrm{A}=\frac{\pi\left(2^{2}\right)}{4}-\frac{1}{2}(2 \times 2)=\pi-2
$$

b. A quarter of circle with a radius of 1 unit minus the triangle in its sector:

$$
\mathrm{B}=\frac{\pi\left(1^{2}\right)}{4}-\frac{1}{2}(1 \times 1)=\frac{\pi}{4}-\frac{1}{2}
$$

c. The area enclosed by 2 quarter of circles with $R=3$ and 2 , and the line $A F$:

$$
\mathrm{C}=\frac{\pi\left(3^{2}\right)}{4}-\frac{\pi\left(2^{2}\right)}{4}-\frac{3+2}{2} \times 1=\frac{9 \pi}{4}-\pi-\frac{5}{2}=\frac{5 \pi}{4}-\frac{5}{2}
$$

So the total shaded area is: $\mathrm{A}+\mathrm{B}+\mathrm{C}=\frac{5 \pi-10}{2}=\frac{5}{2}(\pi-2) \checkmark$

WWW.e-tutorpro.com
3. In the triangle $A B C$, if $A=20^{\circ}, C=80^{\circ}$, and $A D=B C$. Then find the angle x ?

Solution: Triangle $A B C$ is Isosceles, because the angle $A B C$ is also 80° then $A B=A C$
Draw the equilateral tringle AED

Connect E to B. Triangles $A B C$ and $A B E$ are congruent, $S A S$, sharing side $A B, A E=B C$, and the angle: $A B C=B A E=80^{\circ}$

Therefore angle AEB is also 80°. The triangle $A E B$ is Isosceles and $A B=E B$ so the angle $\operatorname{DEB}=20^{\circ}$.
Conclusion: triangles $A B D$ and $E D B$ are congruent, SSS. Therefore angles $A B D=E B D=10^{\circ}$ then the angle CBD is 70°. Therefore the angle x in the triangle CBD is $180-80-70=30^{\circ} \checkmark$

WWW.e-tutorpro.com

4. In the following diagram, $A B C$ is right, isosceles triangle with sides S. C_{1} is a semi-circle with diameter $A B$ centred at O midpoint of $A B$ and C_{2} is a quarter of circle with radius S and centre C.

Prove the area of the triangle is equal to the blue area enclosed by two arcs.

Solution:

The area of the triangle ABC is: $\frac{s^{2}}{2} \checkmark$
The hypotenuse of the triangle $A B=S \sqrt{2}$, then the radius of C_{1} is: $\frac{s \sqrt{2}}{2}$.
The area of the semi-circle C_{1} is: $\frac{1}{2} \pi\left(\frac{S \sqrt{2}}{2}\right)^{2}=\frac{\pi S^{2}}{4}$
The area of the quarter circle ACBC_{2} is: $\frac{\pi S^{2}}{4}$, so the area of white spot is: $\frac{\pi S^{2}}{4}-\frac{S^{2}}{2}$
Therefore the area of the blue zone is the semi-circle area minus the white part:

$$
\frac{\pi S^{2}}{4}-\left(\frac{\pi S^{2}}{4}-\frac{s^{2}}{2}\right)=\frac{S^{2}}{2} \checkmark
$$

Which is equal to the area of the triangle.
5. In the following diagram, a circle with radius r is inscribed in a quarter of a larger circle with radius R. Find the ratio of the shaded to the inner circle area.

Solution:

$$
R=r+\sqrt{2} r=r(1+\sqrt{2}) \text { Shown diagonally }
$$

The total area of the quarter sector is: $\mathrm{A}=\frac{\pi}{4} R^{2}=\frac{\pi}{4} r^{2}(1+\sqrt{2})^{2}=\frac{\pi}{4} r^{2}(3+2 \sqrt{2})=\left(3 \frac{\pi}{4}+\frac{\pi}{2} \sqrt{2}\right) r^{2}$ The area of the inner circle is: $\mathrm{B}: \pi r^{2}$

So the shaded area is $\mathrm{A}-\mathrm{B}=\left(3 \frac{\pi}{4}+\frac{\pi}{2} \sqrt{2}\right) r^{2}-\pi r^{2}=\left(-\frac{\pi}{4}+\frac{\pi}{2} \sqrt{2}\right) r^{2}=\frac{\pi}{4}(2 \sqrt{2}-1) r^{2}$
Therefore the ratio is: $\frac{2 \sqrt{2}-1}{4} \checkmark$
6. Find the smallest positive three-digit integer N , which has a remainder of 2 when divided by 6 , a remainder of 5 when divided by 9 and a remainder of 7 when divided by 11 .

Solution:

According to the divisions rule, results can be represented as:

$$
\frac{N}{6}=a+\frac{2}{6}, \quad \frac{N}{9}=b+\frac{5}{9}, \quad \frac{N}{11}=c+\frac{7}{11}
$$

In which a, b and c are also integers and respectively divisible by 6,9 and 11 with:
The LCM of the denominator will have factors of: $2,3,3$, and 11. Therefore the LCM is: 2.3.3.11 $=198$
Refer to the division rules again, it is known if we subtract the remainder from the number N or we add the difference between the divisor and the remainder to N , the result of division will be an integer.

Note:

$$
\left.\frac{D(\text { dividend })}{d(\text { divisor })}-\mathrm{Q} \text { (quotient }\right)=\frac{R(\text { remainder })}{d}
$$

The difference of the divisor and remainder in each case is 4 , using division property that means:

$$
\begin{array}{ll}
\frac{N}{6}=\frac{198-4}{6}=a, & \text { remainder }=2 \\
\frac{N}{9}=\frac{198-4}{9}=b, & \text { remainder }=5 \\
\frac{N}{11}=\frac{198-4}{11}=c, & \text { remainder }=7
\end{array}
$$

Therefore: $\mathrm{N}=194$ with: $a=34 \mathrm{R}=2, \mathrm{~b}=21 \mathrm{R}=5$ and $\mathrm{c}=17 \mathrm{R}=7 \checkmark$
7. a, b, c are 3 consecutive terms of an arithmetic sequence, Prove:
a. $(a+b),(a+c)$ and $(b+c)$ are also consecutive terms of an arithmetic sequence.
b. $\frac{1}{\sqrt{b}+\sqrt{c}}, \frac{1}{\sqrt{a}+\sqrt{c}}$ and $\frac{1}{\sqrt{a}+\sqrt{b}}$ are also consecutive terms of an arithmetic sequence.

Solution:

a. Let's " a " be the first term, then " $b=a+d$ " and " $c=a+2 d$ " will be the next terms.

Therefore: $\mathrm{a}+\mathrm{b}=2 \mathrm{a}+\mathrm{d}, \mathrm{a}+\mathrm{c}=2 \mathrm{a}+2 \mathrm{~d}$ and $\mathrm{b}+\mathrm{c}=2 \mathrm{a}+3 \mathrm{~d}$. These terms make a new arithmetic sequence with the same common difference d.
b. $\frac{1}{\sqrt{b}+\sqrt{c}}=\frac{1}{\sqrt{a+d}+\sqrt{a+2 d}} \cdot \frac{\sqrt{a+d}-\sqrt{a+2 d}}{\sqrt{a+d}-\sqrt{a+2 d}}=\frac{\sqrt{a+d}-\sqrt{a+2 d}}{a+d-a-2 d}=\frac{\sqrt{a+d}-\sqrt{a+2 d}}{-d}=\frac{\sqrt{a+2 d}-\sqrt{a+d}}{d}$

$$
\begin{align*}
& \frac{1}{\sqrt{a}+\sqrt{c}}=\frac{1}{\sqrt{a}+\sqrt{a+2 d}} \cdot \frac{\sqrt{a}-\sqrt{a+2 d}}{\sqrt{a}-\sqrt{a+2 d}}=\frac{\sqrt{a}-\sqrt{a+2 d}}{a-a-2 d}=\frac{\sqrt{a}-\sqrt{a+2 d}}{-2 d}=\frac{\sqrt{a+2 d}-\sqrt{a}}{2 d} \tag{2}\\
& \frac{1}{\sqrt{a}+\sqrt{b}}=\frac{1}{\sqrt{a}+\sqrt{a+d}} \cdot \frac{\sqrt{a}-\sqrt{a+d}}{\sqrt{a}-\sqrt{a+d}}=\frac{\sqrt{a}-\sqrt{a+d}}{a-a-d}=\frac{\sqrt{a}-\sqrt{a+d}}{-d}=\frac{\sqrt{a+d}-\sqrt{a}}{d} \tag{3}
\end{align*}
$$

To prove these 3 terms represent an arithmetic sequence, calculate (3-2) and (2-1):

$$
\begin{gathered}
\frac{\sqrt{a+d}-\sqrt{a}}{d}-\frac{\sqrt{a+2 d}-\sqrt{a}}{2 d}=\frac{2 \sqrt{a+d}-2 \sqrt{a}-\sqrt{a+2 d}+\sqrt{a}}{2 d}=\frac{2 \sqrt{a+d}-\sqrt{a+2 d}-\sqrt{a}}{2 d}=\mathrm{D} \\
\frac{\sqrt{a+2 d}-\sqrt{a}}{2 d}-\frac{\sqrt{a+2 d}-\sqrt{a+d}}{d}=\frac{\sqrt{a+2 d}-\sqrt{a}-2 \sqrt{a+2 d}+2 \sqrt{a+d}}{2 d}=\frac{2 \sqrt{a+d}-\sqrt{a+2 d}-\sqrt{a}}{2 d}=\mathrm{D}
\end{gathered}
$$

D is the common difference.
8. Three men-A, B, and C-crossed paths walking through woods on a cold night. They decided to light a fire to rest by, and set out to gather some firewood. A came back with 5 logs of wood, B brought 3 logs, but C came back empty-handed. C requested that they let him rest by the fire and promised to pay them some money in the morning. In the morning C paid them $\$ 8$. How should A and B split the money fairly?
a. $A \$ 7 ; B \$ 1$
b. $A \$ 6 ; B \$ 2$
c. $A \$ 5 ; B \$ 3$
d. $A \$ 4 ; B \$ 4$
e. None of these

Solution:

All three men are equally benefited by the fire from the 8 logs of wood. Each man used $8 / 3$ logs of wood through the night. Therefore,

A contributed 5-8/3=7/3 logs of wood.
B contributed 3-8/3=1/3 log of wood, and C zero.
Therefore they must share \$8 in proportion to $7 / 3: 1 / 3$ and $0 / 3$ so A \$7 and B \$1.
9. Multiple identities in one question:

If A, B and C are the 3 angles of a triangle, prove: $\sin 2 A+\sin 2 B+\sin 2 C=4 \sin A . \sin B . \sin C$

Solution:

Recall to the following identities: $\sin 2 A=2 \sin A \cdot \cos A$

$$
\sin (A+B)=\sin A \cdot \cos B+\cos A \cdot \sin B, \quad \text { and } \quad \cos (A-B)=\cos A \cdot \cos B+\sin A \cdot \sin B
$$

a. We prove: $\sin 2 A+\sin 2 B=2 \sin (A+B) \cdot \cos (A-B)$

$$
\begin{aligned}
\text { RHS }=2 & (\sin A \cdot \cos B+\cos A \cdot \sin B)(\cos A \cdot \cos B+\sin A \cdot \sin B) \\
& =2\left(\sin A \cdot \cos A \cdot \cos ^{2} B+\sin B \cdot \cos B \cdot \sin ^{2} B+\sin B \cdot \cos B \cdot \cos ^{2} A+\sin A \cdot \cos A \cdot \sin ^{2} B\right) \\
& =2 \sin A \cdot \cos A\left(\cos ^{2} B+\sin ^{2} B\right)+2 \sin B \cdot \cos B\left(\sin ^{2} B+\cos ^{2} A\right)=\sin 2 A+\sin 2 B
\end{aligned}
$$

b. Given: $A+B+C=\pi$, we can see:

i. $\quad \sin (A+B)=\sin C$
ii. $\quad \cos (A+B)=-\cos C$
c. $\quad \cos (A-B)-\cos (A+B)=\cos A \cdot \cos B+\sin A \cdot \sin B-(\cos A \cdot \cos B-\sin A \cdot \sin B)=2 \sin A \cdot \sin B \quad \checkmark$
d. Prove of identity (1):

According to a. LHS: $\sin 2 A+\sin 2 B+\sin 2 C=2 \sin (A+B) \cdot \cos (A-B)+\sin 2 C$
$=2 \sin (A+B) \cdot \cos (A-B)+2 \sin C \cdot \cos C$
$=2 \sin C \cdot \cos (A-B)+2 \sin C \cdot \cos C$ (according to $b \cdot i)$
$=2 \sin C \cdot(\cos (A-B)+\cos C)=2 \sin C \cdot(\cos (A-B)-\cos (A+B)) \quad$ (according to b.ii)

Then according to $c .=2 \sin C .(2 \sin A \cdot \sin B)=4 \sin A \cdot \sin B \cdot \sin C$
Therefore: $\quad \sin 2 A+\sin 2 B+\sin 2 C=4 \sin A \cdot \sin B \cdot \sin C \quad \checkmark$
10. in the following sequence: $\left(1-\frac{1}{2}\right),\left(2-\frac{2}{3}\right),\left(3-\frac{3}{4}\right), \ldots\left(15-\frac{15}{16}\right)$
a. write the general term in simplest form
b. find the product of all terms

Solution:

a. $\quad U_{n}=n-\frac{n}{n+1} \checkmark$
b. After simplifying each term:

$$
P=\left(\frac{1}{2}\right) \cdot\left(\frac{4}{3}\right) \cdot\left(\frac{9}{4}\right) \cdot\left(\frac{16}{5}\right) \cdot\left(\frac{25}{6}\right) \cdot\left(\frac{36}{7}\right) \ldots \ldots \ldots \ldots\left(\frac{225}{16}\right)
$$

As we can see the numerator is the product of consecutive integers square (n^{2}) from 1 to 15 and the denominator is the product of consecutive integers $(\mathrm{n}+1)$ from 2 to 16 .

After crossing out common factors from numerator with denominator we get:

$$
P=1 \cdot 2 \cdot 3 \cdot 4.5 \ldots \ldots \ldots \frac{15}{16}=\frac{15!}{16} \checkmark
$$

